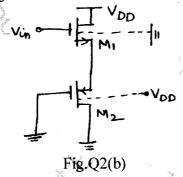


M.Tech. Degree Examination, June/July 2013

Design of Analog and Mixed Mode VLSI Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.


- 1 a. Derive and explain I/V characteristics of MOSFET from fundamental concept. (12 Marks)
 - b. Plot the variation of gate to source and gate to drain capacitance as function of gate to source voltage in different regions of operations of a MOSFET. Give explanation for each region.

 (08 Marks)

2 a. Derive an expression for voltage gain and output resistance of common source stage with source degeneration $\lambda \neq 0$ and $r \neq 0$. (15 Marks)

b. Calculate the voltage gain of the circuit shown in Fig.Q2(b).

(05 Marks)

3 a. Calculate the voltage gain of the circuit in Fig.Q3(a) if $\lambda \neq 0$ and $r \neq 0$.

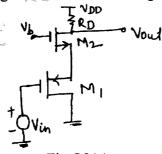
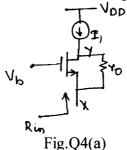



Fig.Q3(a)

(10 Marks)

- b. Give the circuit of folded cascade stage with PMOS input transistor and obtain its large signal characteristics V_{out} versus V_{in}. (19 Marks)
- 4 a. Calculate the input resistance of the circuit shown in Fig.Q4(a).

(06 Marks)

- b. Obtain the high frequency model of a common source stage. Obtain its transfer function and discuss its frequency response. (14 Marks)
- 5 For the circuit shown in Fig.Q5(a), find:
 - i) What is the required input CM for which R_{ss} sustains 0.5V?
 - ii) Calculate R_D for a differential gain of 5.
 - iii) What happens at the output, if the input CM level is 50 mV higher than the value calculated in (i)?

Assume:
$$\left(\frac{W}{L}\right)_{1,2} = \frac{25}{0.5}$$
, $\mu_{nCox} = 50\mu A/V^2$, $V_{Th} = 0.6 \text{ V}$, $\lambda = r = 0$, $V_{DD} = 3V$,

Tail current = 1 mA, $R_{D1} = R_{D2} = R_D$

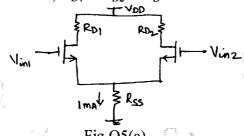


Fig.Q5(a)

(10 Marks)

Explain the operation of Gilbert cell.

(10 Marks)

What is VCO? Explain VCO.

(04 Marks)

b. Explain important performance parameters of VCO's.

- (08 Marks)
- c. A VCO sensor a small sinusoidal control voltage $V_{cont} = V_m \cos(w_m t)$. Determine the output waveform and its spectrum. (08 Marks)
- Explain the operation of current steering DAC architecture with neat diagrams and 7 (10 Marks)
 - Explain the operation of pipeline ADC architecture with neat diagrams and example.

(10 Marks)

- 8 Write technical notes on the following:
 - PLL as a frequency synthesizer.

(10 Marks)

Resistor string DAC using binary switch array.

(10 Marks)